

An Overv iew

computer science

J. Glenn Brookshear
and

Dennis Brylow

12th Edition

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

A01_BROO0064_12_SE_FM.indd 1 06/03/14 4:40 PM

Vice President and Editorial Director, ECS: Marcia Horton
Executive Editor: Tracy Johnson
Program Management Team Lead: Scott Disanno
Program Manager: Carole Snyder
Project Manager: Camille Trentacoste
Operations Specialist: Linda Sager
Cover Designer: Bruce Kenselaar
Cover photo: Mykola Mazuryk/Fotolia

Copyright © 2015, 2012, 2009 by Pearson Education, Inc., Upper Saddle River, New Jersey,
07458, All rights reserved. Printed in the United States of America. This publication is
protected by Copyright and permission should be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permission(s), write to: Rights and Permissions Department.

Pearson® is a registered trademark of Pearson plc

Library of Congress Cataloging-in-Publication Data
On file

10  9  8  7  6  5  4  3  2  1

www.pearsonhighered.com
	 ISBN 10: 0-13-376006-5
� ISBN 13: 973-0-13-376006-4

A01_BROO0064_12_SE_FM.indd 2 06/03/14 4:40 PM

http://www.pearsonhighered.com

This book presents an introductory survey of computer science. It explores the
breadth of the subject while including enough depth to convey an honest appre-
ciation for the topics involved.

Audience
We wrote this text for students of computer science as well as students from other
disciplines. As for computer science students, most begin their studies with the
illusion that computer science is programming, Web browsing, and Internet file
sharing because that is essentially all they have seen. Yet computer science is
much more than this. Beginning computer science students need exposure to
the breadth of the subject in which they are planning to major. Providing this
exposure is the theme of this book. It gives students an overview of computer
science—a foundation from which they can appreciate the relevance and inter-
relationships of future courses in the field. This survey approach is, in fact, the
model used for introductory courses in the natural sciences.

This broad background is also what students from other disciplines need if
they are to relate to the technical society in which they live. A computer science
course for this audience should provide a practical, realistic understanding of the
entire field rather than merely an introduction to using the Internet or training
in the use of some popular software packages. There is, of course, a proper place
for that training, but this text is about educating.

While writing previous editions of this text, maintaining accessibility for non-
technical students was a major goal. The result was that the book has been used
successfully in courses for students over a wide range of disciplines and educa-
tional levels, ranging from high school to graduate courses. This 12th edition is
designed to continue that tradition.

New in the 12th Edition
The underlying theme during the development of this 12th edition has been incor-
porating an introduction to the Python programming language into key chapters.
In the earliest chapters, these supplementary sections are labeled optional.

Preface

	 iii

A01_BROO0064_12_SE_FM.indd 3 06/03/14 4:40 PM

	 iv Preface

By Chapter 5, we replace the previous editions’ Pascal-like notation with Python
and Python-flavored pseudocode.

This represents a significant change for a book that has historically striven
to sidestep allegiance to any specific language. We make this change for several
reasons. First, the text already contains quite a bit of code in various languages,
including detailed pseudocode in several chapters. To the extent that readers are
already absorbing a fair amount of syntax, it seems appropriate to retarget that
syntax toward a language they may actually see in a subsequent course. More
importantly, a growing number of instructors who use this text have made the
determination that even in a breadth-first introduction to computing, it is difficult
for students to master many of the topics in the absence of programming tools
for exploration and experimentation.

But why Python? Choosing a language is always a contentious matter, with
any choice bound to upset at least as many as it pleases. Python is an excellent
middle ground, with:

•	 a clean, easily learned syntax,
•	 simple I/O primitives,
•	 data types and control structures that correspond closely to the

pseudocode primitives used in earlier editions, and
•	 support for multiple programming paradigms.

It is a mature language with a vibrant development community and copi-
ous online resources for further study. Python remains one of the top 10 most
commonly used languages in industry by some measures, and has seen a sharp
increase in its usage for introductory computer science courses. It is particularly
popular for introductory courses for non-majors, and has wide acceptance in
other STEM fields such as physics and biology as the language of choice for com-
putational science applications.

Nevertheless, the focus of the text remains on broad computer science
concepts; the Python supplements are intended to give readers a deeper taste
of programming than previous editions, but not to serve as a full-fledged intro-
duction to programming. The Python topics covered are driven by the existing
structure of the text. Thus, Chapter 1 touches on Python syntax for representing
data—integers, floats, ASCII and Unicode strings, etc. Chapter 2 touches on Python
operations that closely mirror the machine primitives discussed throughout the
rest of the chapter. Conditionals, loops, and functions are introduced in Chapter 5,
at the time that those constructs are needed to devise a sufficiently complete
pseudocode for describing algorithms. In short, Python constructs are used to
reinforce computer science concepts rather than to hijack the conversation.

In addition to the Python content, virtually every chapter has seen revisions,
updates, and corrections from the previous editions.

Organization
This text follows a bottom-up arrangement of subjects that progresses from the
concrete to the abstract—an order that results in a sound pedagogical presenta-
tion in which each topic leads to the next. It begins with the fundamentals of
information encoding, data storage, and computer architecture (Chapters 1 and 2);
progresses to the study of operating systems (Chapter 3) and computer networks

A01_BROO0064_12_SE_FM.indd 4 06/03/14 4:40 PM

	 vOrganization

(Chapter 4); investigates the topics of algorithms, programming languages, and
software development (Chapters 5 through 7); explores techniques for enhancing
the accessibility of information (Chapters 8 and 9); considers some major applica-
tions of computer technology via graphics (Chapter 10) and artificial intelligence
(Chapter 11); and closes with an introduction to the abstract theory of computa-
tion (Chapter 12).

Although the text follows this natural progression, the individual chapters and
sections are surprisingly independent and can usually be read as isolated units or
rearranged to form alternative sequences of study. Indeed, the book is often used
as a text for courses that cover the material in a variety of orders. One of these
alternatives begins with material from Chapters 5 and 6 (Algorithms and Program-
ming Languages) and returns to the earlier chapters as desired. I also know of
one course that starts with the material on computability from Chapter 12. In still
other cases, the text has been used in “senior capstone” courses where it serves as
merely a backbone from which to branch into projects in different areas. Courses
for less technically-oriented audiences may want to concentrate on Chapters 4
(Networking and the Internet), 9 (Database Systems), 10 (Computer Graphics),
and 11 (Artificial Intelligence).

On the opening page of each chapter, we have used asterisks to mark some
sections as optional. These are sections that cover topics of more specific interest
or perhaps explore traditional topics in more depth. Our intention is merely to
provide suggestions for alternative paths through the text. There are, of course,
other shortcuts. In particular, if you are looking for a quick read, we suggest the
following sequence:

Section Topic

1.1–1.4 Basics of data encoding and storage

2.1–2.3 Machine architecture and machine language

3.1–3.3 Operating systems

4.1–4.3 Networking and the Internet

5.1–5.4 Algorithms and algorithm design

6.1–6.4 Programming languages

7.1–7.2 Software engineering

8.1–8.3 Data abstractions

9.1–9.2 Database systems

10.1–10.2 Computer graphics

11.1–11.3 Artificial intelligence

12.1–12.2 Theory of computation

There are several themes woven throughout the text. One is that computer
science is dynamic. The text repeatedly presents topics in a historical perspective,
discusses the current state of affairs, and indicates directions of research. Another
theme is the role of abstraction and the way in which abstract tools are used to
control complexity. This theme is introduced in Chapter 0 and then echoed in
the context of operating system architecture, networking, algorithm develop-
ment, programming language design, software engineering, data organization,
and computer graphics.

A01_BROO0064_12_SE_FM.indd 5 06/03/14 4:40 PM

	 vi Preface

To Instructors
There is more material in this text than students can normally cover in a single
semester so do not hesitate to skip topics that do not fit your course objectives or
to rearrange the order as you see fit. You will find that, although the text follows
a plot, the topics are covered in a largely independent manner that allows you
to pick and choose as you desire. The book is designed to be used as a course
resource—not as a course definition. We suggest encouraging students to read
the material not explicitly included in your course. We underrate students if we
assume that we have to explain everything in class. We should be helping them
learn to learn on their own.

We feel obliged to say a few words about the bottom-up, concrete-to-abstract
organization of the text. As academics, we too often assume that students will
appreciate our perspective of a subject—often one that we have developed over
many years of working in a field. As teachers, we think we do better by present-
ing material from the student’s perspective. This is why the text starts with data
representation/storage, machine architecture, operating systems, and network-
ing. These are topics to which students readily relate—they have most likely
heard terms such as JPEG and MP3; they have probably recorded data on CDs
and DVDs; they have purchased computer components; they have interacted
with an operating system; and they have used the Internet. By starting the course
with these topics, students discover answers to many of the “why” questions they
have been carrying for years and learn to view the course as practical rather than
theoretical. From this beginning it is natural to move on to the more abstract
issues of algorithms, algorithmic structures, programming languages, software
development methodologies, computability, and complexity that those of us in
the field view as the main topics in the science. As already stated, the topics are
presented in a manner that does not force you to follow this bottom-up sequence,
but we encourage you to give it a try.

We are all aware that students learn a lot more than we teach them directly,
and the lessons they learn implicitly are often better absorbed than those that
are studied explicitly. This is significant when it comes to “teaching” problem
solving. Students do not become problem solvers by studying problem-solving
methodologies. They become problem solvers by solving problems—and not just
carefully posed “textbook problems.” So this text contains numerous problems,
a few of which are intentionally vague—meaning that there is not necessarily a
single correct approach or a single correct answer. We encourage you to use these
and to expand on them.

Other topics in the “implicit learning” category are those of professionalism,
ethics, and social responsibility. We do not believe that this material should be
presented as an isolated subject that is merely tacked on to the course. Instead,
it should be an integral part of the coverage that surfaces when it is relevant.
This is the approach followed in this text. You will find that Sections 3.5, 4.5, 7.9,
9.7, and 11.7 present such topics as security, privacy, liability, and social aware-
ness in the context of operating systems, networking, software engineering,
database systems, and artificial intelligence. You will also find that each chapter
includes a collection of questions called Social Issues that challenge students to
think about the relationship between the material in the text and the society in
which they live.

A01_BROO0064_12_SE_FM.indd 6 06/03/14 4:40 PM

	 viiSupplemental Resources

Thank you for considering our text for your course. Whether you do or do not
decide that it is right for your situation, I hope that you find it to be a contribution
to the computer science education literature.

Pedagogical Features
This text is the product of many years of teaching. As a result, it is rich in peda-
gogical aids. Paramount is the abundance of problems to enhance the student’s
participation—over 1,000 in this 12th edition. These are classified as Questions &
Exercises, Chapter Review Problems, and Social Issues. The Questions & Exer-
cises appear at the end of each section (except for the introductory chapter).
They review the material just discussed, extend the previous discussion, or hint
at related topics to be covered later. These questions are answered in Appendix F.

The Chapter Review Problems appear at the end of each chapter (except for
the introductory chapter). They are designed to serve as “homework” problems
in that they cover the material from the entire chapter and are not answered in
the text.

Also at the end of each chapter are the questions in the Social Issues category.
They are designed for thought and discussion. Many of them can be used to
launch research assignments culminating in short written or oral reports.

Each chapter also ends with a list called Additional Reading that contains
references to other material relating to the subject of the chapter. The websites
identified in this preface, in the text, and in the sidebars of the text are also good
places to look for related material.

Supplemental Resources
A variety of supplemental materials for this text are available at the book’s com-
panion website: www.pearsonhighered.com/brookshear. The following are
accessible to all readers:

•	 Chapter-by-chapter activities that extend topics in the text and provide
opportunities to explore related topics

•	 Chapter-by-chapter “self-tests” that help readers to rethink the material
covered in the text

•	 Manuals that teach the basics of Java and C+ in a pedagogical sequence
compatible with the text

In addition, the following supplements are available to qualified
instructors at Pearson Education’s Instructor Resource Center. Please visit
www.pearsonhighered.com or contact your Pearson sales representative for
information on how to access them:

•	 Instructor’s Guide with answers to the Chapter Review Problems
•	 PowerPoint lecture slides
•	 Test bank

Errata for this book (should there be any!) will be available at
www.mscs.mu.edu/~brylow/errata/.

A01_BROO0064_12_SE_FM.indd 7 06/03/14 4:40 PM

http://www.pearsonhighered.com/brookshear
http://www.pearsonhighered.com
http://www.mscs.mu.edu/~brylow/errata

	 viii Preface

To Students
Glenn Brookshear is a bit of a nonconformist (some of his friends would say more
than a bit) so when he set out to write this text he didn’t always follow the advice
he received. In particular, many argued that certain material was too advanced
for beginning students. But, we believe that if a topic is relevant, then it is rel-
evant even if the academic community considers it to be an “advanced topic.”
You deserve a text that presents a complete picture of computer science—not
a watered-down version containing artificially simplified presentations of only
those topics that have been deemed appropriate for introductory students. Thus,
we have not avoided topics. Instead, we’ve sought better explanations. We’ve
tried to provide enough depth to give you an honest picture of what computer
science is all about. As in the case of spices in a recipe, you may choose to skip
some of the topics in the following pages, but they are there for you to taste if you
wish—and we encourage you to do so.

We should also point out that in any course dealing with technology, the
details you learn today may not be the details you will need to know tomorrow.
The field is dynamic—that’s part of the excitement. This book will give you a cur-
rent picture of the subject as well as a historical perspective. With this background
you will be prepared to grow along with technology. We encourage you to start
the growing process now by exploring beyond this text. Learn to learn.

Thank you for the trust you have placed in us by choosing to read our book.
As authors we have an obligation to produce a manuscript that is worth your time.
We hope you find that we have lived up to this obligation.

Acknowledgments
First and foremost, I thank Glenn Brookshear, who has shepherded this book, “his
baby,” through eleven previous editions, spanning more than a quarter century of
rapid growth and tumultuous change in the field of computer science. While this
is the first edition in which he has allowed a co-author to oversee all of the revi-
sions, the pages of this 12th edition remain overwhelmingly in Glenn’s voice and,
I hope, guided by his vision. Any new blemishes are mine; the elegant underlying
framework is all his.

I join Glenn in thanking those of you who have supported this book by read-
ing and using it in previous editions. We are honored.

David T. Smith (Indiana University of Pennsylvania) played a significant
role in co-authoring revisions to the 11th edition with me, many of which are
still visible in this 12th edition. David’s close reading of this edition and careful
attention to the supplemental materials have been essential. Andrew Kuemmel
(Madison West), George Corliss (Marquette), and Chris Mayfield (James Madison)
all provided valuable feedback, insight, and/or encouragement on drafts for this
edition, while James E. Ames (Virginia Commonwealth), Stephanie E. August
(Loyola), Yoonsuck Choe (Texas A&M), Melanie Feinberg (UT-Austin), Eric
D. Hanley (Drake), Sudharsan R. Iyengar (Winona State), Ravi Mukkamala
(Old Dominion), and Edward Pryor (Wake Forest) all offered valuable reviews of
the Python-specific revisions.

A01_BROO0064_12_SE_FM.indd 8 06/03/14 4:40 PM

	 ixAcknowledgments

Others who have contributed in this or previous editions include J. M. Adams,
C. M. Allen, D. C. S. Allison, E. Angel, R. Ashmore, B. Auernheimer, P. Bankston,
M. Barnard, P. Bender, K. Bowyer, P. W. Brashear, C. M. Brown, H. M Brown,
B. Calloni, J. Carpinelli, M. Clancy, R. T. Close, D. H. Cooley, L. D. Cornell, M.
J. Crowley, F. Deek, M. Dickerson, M. J. Duncan, S. Ezekiel, C. Fox, S. Fox,
N. E. Gibbs, J. D. Harris, D. Hascom, L. Heath, P. B. Henderson, L. Hunt, M.
Hutchenreuther, L. A. Jehn, K. K. Kolberg, K. Korb, G. Krenz, J. Kurose, J. Liu,
T. J. Long, C. May, J. J. McConnell, W. McCown, S. J. Merrill, K. Messersmith,
J. C. Moyer, M. Murphy, J. P. Myers, Jr., D. S. Noonan, G. Nutt, W. W. Oblitey,
S. Olariu, G. Riccardi, G. Rice, N. Rickert, C. Riedesel, J. B. Rogers, G. Saito, W.
Savitch, R. Schlafly, J. C. Schlimmer, S. Sells, Z. Shen, G. Sheppard, J. C. Simms,
M. C. Slattery, J. Slimick, J. A. Slomka, J. Solderitsch, R. Steigerwald, L. Steinberg,
C. A. Struble, C. L. Struble, W. J. Taffe, J. Talburt, P. Tonellato, P. Tromovitch,
P. H. Winston, E. D. Winter, E. Wright, M. Ziegler, and one anonymous. To these
individuals we give our sincere thanks.

As already mentioned, you will find Java and C++ manuals at the text’s
Companion Website that teach the basics of these languages in a format com-
patible with the text. These were written by Diane Christie. Thank you, Diane.
Another thank you goes to Roger Eastman who was the creative force behind the
chapter-by-chapter activities that you will also find at the companion website.

I also thank the good people at Pearson who have supported this project.
Tracy Johnson, Camille Trentacoste, and Carole Snyder in particular have been
a pleasure to work with, and brought their wisdom and many improvements to
the table throughout the process.

Finally, my thanks to my wife, Petra—“the Rock”—to whom this edition is
dedicated. Her patience and fortitude all too frequently exceeded my own, and
this book is better for her steadying influence.

D.W.B.

A01_BROO0064_12_SE_FM.indd 9 06/03/14 4:40 PM

	 Chapter 0	 Introduction  1
	 0.1	 The Role of Algorithms  2
	 0.2	 The History of Computing  4
	 0.3	 An Outline of Our Study  9
	 0.4	 The Overarching Themes of Computer Science  11

	 Chapter 1	 Data Storage  19
	 1.1	 Bits and Their Storage  20
	 1.2	 Main Memory  26
	 1.3	 Mass Storage  29
	 1.4	 Representing Information as Bit Patterns  34
	 *1.5	 The Binary System  40
	 *1.6	 Storing Integers  46
	 *1.7	 Storing Fractions  52
	 *1.8	 Data and Programming  57
	 *1.9	 Data Compression  63
	 *1.10	 Communication Errors  69

	 Chapter 2	 Data Manipulation  81
	 2.1	 Computer Architecture  82
	 2.2	 Machine Language  85
	 2.3	 Program Execution  91
	 *2.4	 Arithmetic/Logic Instructions  98
	 *2.5	 Communicating with Other Devices  103
	 *2.6	 Programming Data Manipulation  108
	 *2.7	 Other Architectures  117

	 Chapter 3	 Operating Systems  127
	 3.1	 The History of Operating Systems  128
	 3.2	 Operating System Architecture  132
	 3.3	 Coordinating the Machine’s Activities  140

Contents

	 x

*Asterisks indicate suggestions for optional sections.

A01_BROO0064_12_SE_FM.indd 10 06/03/14 4:40 PM

	 xiContents

	 *3.4	 Handling Competition Among Processes  143
	 3.5	 Security  148

	 Chapter 4	 Networking and the Internet  157
	 4.1	 Network Fundamentals  158
	 4.2	 The Internet  167
	 4.3	 The World Wide Web  176
	 *4.4	 Internet Protocols  185
	 4.5	 Security  191

	 Chapter 5	 Algorithms  205
	 5.1	 The Concept of an Algorithm  206
	 5.2	 Algorithm Representation  209
	 5.3	 Algorithm Discovery  216
	 5.4	 Iterative Structures  222
	 5.5	 Recursive Structures  233
	 5.6	 Efficiency and Correctness  241

	 Chapter 6	 Programming Languages  259
	 6.1	 Historical Perspective  260
	 6.2	 Traditional Programming Concepts  268
	 6.3	 Procedural Units  280
	 6.4	 Language Implementation  288
	 6.5	 Object-Oriented Programming  296
	 *6.6	 Programming Concurrent Activities  303
	 *6.7	 Declarative Programming  306

	 Chapter 7	 Software Engineering  319
	 7.1	 The Software Engineering Discipline  320
	 7.2	 The Software Life Cycle  322
	 7.3	 Software Engineering Methodologies  326
	 7.4	 Modularity  329
	 7.5	 Tools of the Trade  336
	 7.6	 Quality Assurance  344
	 7.7	 Documentation  348
	 7.8	 The Human-Machine Interface  349
	 7.9	 Software Ownership and Liability  352

	 Chapter 8	 Data Abstractions  361
	 8.1	 Basic Data Structures  362
	 8.2	 Related Concepts  365
	 8.3	 Implementing Data Structures  368
	 8.4	 A Short Case Study  382
	 8.5	 Customized Data Types  387
	 8.6	 Classes and Objects  391
	 *8.7	 Pointers in Machine Language  393

A01_BROO0064_12_SE_FM.indd 11 06/03/14 4:40 PM

	 xii Contents

	 Chapter 9	 Database Systems  403
	 9.1	 Database Fundamentals  404
	 9.2	 The Relational Model  409
	 *9.3	 Object-Oriented Databases  420
	 *9.4	 Maintaining Database Integrity  422
	 *9.5	 Traditional File Structures  426
	 9.6	 Data Mining  434
	 9.7	 Social Impact of Database Technology  436

	Chapter 10	 Computer Graphics  445
	 10.1	 The Scope of Computer Graphics  446
	 10.2	 Overview of 3D Graphics  448
	 10.3	 Modeling  449
	 10.4	 Rendering  457
	 *10.5	 Dealing with Global Lighting  468
	 10.6	 Animation  471

	Chapter 11	 Artificial Intelligence  479
	 11.1	 Intelligence and Machines  480
	 11.2	 Perception  485
	 11.3	 Reasoning  491
	 11.4	 Additional Areas of Research  502
	 11.5	 Artificial Neural Networks  507
	 11.6	 Robotics  514
	 11.7	 Considering the Consequences  517

	Chapter 12	 Theory of Computation  527
	 12.1	 Functions and Their Computation  528
	 12.2	 Turing Machines  530
	 12.3	 Universal Programming Languages  534
	 12.4	 A Noncomputable Function  540
	 12.5	 Complexity of Problems  544
	 *12.6	 Public-Key Cryptography  553

Appendixes  563
	 A	 ASCII  565
	 B	� Circuits to Manipulate Two’s Complement

	 Representations  566
	 C	 A Simple Machine Language  569
	 D	 High-Level Programming Languages  571
	 E	 The Equivalence of Iterative and Recursive Structures  573
	 F	 Answers to Questions & Exercises  575

Index  617

A01_BROO0064_12_SE_FM.indd 12 06/03/14 4:40 PM

C H A P T E R

Introduction
In this preliminary chapter we consider the scope of computer

science, develop a historical perspective, and establish a

foundation from which to launch our study.

0

0.1	 The Role of Algorithms

0.2	 The History of
Computing

0.3	 An Outline of Our Study

0.4	 The Overarching
Themes of Computer Science
Algorithms
Abstraction
Creativity

Data
Programming
Internet
Impact

M00_BROO0064_12_SE_C00.indd 1 06/03/14 4:43 PM

	 2 Chapter 0  Introduction

Computer science is the discipline that seeks to build a scientific foundation for
such topics as computer design, computer programming, information processing,
algorithmic solutions of problems, and the algorithmic process itself. It provides
the underpinnings for today’s computer applications as well as the foundations
for tomorrow’s computing infrastructure.

This book provides a comprehensive introduction to this science. We will
investigate a wide range of topics including most of those that constitute a typical
university computer science curriculum. We want to appreciate the full scope
and dynamics of the field. Thus, in addition to the topics themselves, we will
be interested in their historical development, the current state of research, and
prospects for the future. Our goal is to establish a functional understanding of
computer science—one that will support those who wish to pursue more special-
ized studies in the science as well as one that will enable those in other fields to
flourish in an increasingly technical society.

0.1  The Role of Algorithms
We begin with the most fundamental concept of computer science—that of an
algorithm. Informally, an algorithm is a set of steps that defines how a task is
performed. (We will be more precise later in Chapter 5.) For example, there are
algorithms for cooking (called recipes), for finding your way through a strange
city (more commonly called directions), for operating washing machines (usually
displayed on the inside of the washer’s lid or perhaps on the wall of a laundro-
mat), for playing music (expressed in the form of sheet music), and for perform-
ing magic tricks (Figure 0.1).

Before a machine such as a computer can perform a task, an algorithm for
performing that task must be discovered and represented in a form that is compat-
ible with the machine. A representation of an algorithm is called a program. For
the convenience of humans, computer programs are usually printed on paper or
displayed on computer screens. For the convenience of machines, programs are
encoded in a manner compatible with the technology of the machine. The process
of developing a program, encoding it in machine-compatible form, and inserting
it into a machine is called programming. Programs, and the algorithms they
represent, are collectively referred to as software, in contrast to the machinery
itself, which is known as hardware.

The study of algorithms began as a subject in mathematics. Indeed, the
search for algorithms was a significant activity of mathematicians long before
the development of today’s computers. The goal was to find a single set of
directions that described how all problems of a particular type could be solved.
One of the best known examples of this early research is the long division
algorithm for finding the quotient of two multiple-digit numbers. Another
example is the Euclidean algorithm, discovered by the ancient Greek math-
ematician Euclid, for finding the greatest common divisor of two positive
integers (Figure 0.2).

Once an algorithm for performing a task has been found, the performance
of that task no longer requires an understanding of the principles on which the
algorithm is based. Instead, the performance of the task is reduced to the process
of merely following directions. (We can follow the long division algorithm to find
a quotient or the Euclidean algorithm to find a greatest common divisor without

M00_BROO0064_12_SE_C00.indd 2 06/03/14 4:43 PM

	 30.1  The Role of Algorithms

Figure 0.1   An algorithm for a magic trick

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Effect: The performer places some cards from a normal deck of playing cards face
down on a table and mixes them thoroughly while spreading them out on the table.
Then, as the audience requests either red or black cards, the performer turns over cards
of the requested color.

Secret and Patter:

From a normal deck of cards, select ten red cards and ten black cards. Deal these cards
face up in two piles on the table according to color.

Announce that you have selected some red cards and some black cards.

Pick up the red cards. Under the pretense of aligning them into a small deck, hold them
face down in your left hand and, with the thumb and first finger of your right hand, pull
back on each end of the deck so that each card is given a slightly backward curve. Then
place the deck of red cards face down on the table as you say, “Here are the red cards
in this stack.”

Pick up the black cards. In a manner similar to that in step 3, give these cards a slight
forward curve. Then return these cards to the table in a face-down deck as you say,
“And here are the black cards in this stack.”

Immediately after returning the black cards to the table, use both hands to mix the red
and black cards (still face down) as you spread them out on the tabletop. Explain that
you are thoroughly mixing the cards.

6.1. Ask the audience to request either a red or a black card.

6.2. If the color requested is red and there is a face-down card with a concave
 appearance, turn over such a card while saying, “Here is a red card.”

6.3. If the color requested is black and there is a face-down card with a convex
 appearance, turn over such a card while saying, “Here is a black card.”

6.4. Otherwise, state that there are no more cards of the requested color and turn over
 the remaining cards to prove your claim.

As long as there are face-down cards on the table, repeatedly
execute the following steps:

Figure 0.2   The Euclidean algorithm for finding the greatest common divisor of two
positive integers

Description: This algorithm assumes that its input consists of two positive integers and
proceeds to compute the greatest common divisor of these two values.

Procedure:

Step 1. Assign M and N the value of the larger and smaller of the two input values, respectively.

Step 2. Divide M by N, and call the remainder R.

Step 3. If R is not 0, then assign M the value of N, assign N the value of R, and return to step 2;
 otherwise, the greatest common divisor is the value currently assigned to N.

M00_BROO0064_12_SE_C00.indd 3 06/03/14 4:43 PM

	 4 Chapter 0  Introduction

understanding why the algorithm works.) In a sense, the intelligence required to
solve the problem at hand is encoded in the algorithm.

Capturing and conveying intelligence (or at least intelligent behavior) by
means of algorithms allows us to build machines that perform useful tasks.
Consequently, the level of intelligence displayed by machines is limited by
the intelligence that can be conveyed through algorithms. We can construct a
machine to perform a task only if an algorithm exists for performing that task. In
turn, if no algorithm exists for solving a problem, then the solution of that prob-
lem lies beyond the capabilities of machines.

Identifying the limitations of algorithmic capabilities solidified as a subject
in mathematics in the 1930s with the publication of Kurt Gödel’s incomplete-
ness theorem. This theorem essentially states that in any mathematical theory
encompassing our traditional arithmetic system, there are statements whose
truth or falseness cannot be established by algorithmic means. In short, any com-
plete study of our arithmetic system lies beyond the capabilities of algorithmic
activities. This realization shook the foundations of mathematics, and the study
of algorithmic capabilities that ensued was the beginning of the field known today
as computer science. Indeed, it is the study of algorithms that forms the core of
computer science.

0.2  The History of Computing
Today’s computers have an extensive genealogy. One of the earlier computing
devices was the abacus. History tells us that it probably had its roots in ancient
China and was used in the early Greek and Roman civilizations. The machine
is quite simple, consisting of beads strung on rods that are in turn mounted in
a rectangular frame (Figure 0.3). As the beads are moved back and forth on the
rods, their positions represent stored values. It is in the positions of the beads that
this “computer” represents and stores data. For control of an algorithm’s execu-
tion, the machine relies on the human operator. Thus the abacus alone is merely
a data storage system; it must be combined with a human to create a complete
computational machine.

In the time period after the Middle Ages and before the Modern Era, the
quest for more sophisticated computing machines was seeded. A few inventors
began to experiment with the technology of gears. Among these were Blaise
Pascal (1623–1662) of France, Gottfried Wilhelm Leibniz (1646–1716) of Germany,
and Charles Babbage (1792–1871) of England. These machines represented data
through gear positioning, with data being entered mechanically by establishing
initial gear positions. Output from Pascal’s and Leibniz’s machines was achieved
by observing the final gear positions. Babbage, on the other hand, envisioned
machines that would print results of computations on paper so that the possibility
of transcription errors would be eliminated.

As for the ability to follow an algorithm, we can see a progression of flex-
ibility in these machines. Pascal’s machine was built to perform only addition.
Consequently, the appropriate sequence of steps was embedded into the struc-
ture of the machine itself. In a similar manner, Leibniz’s machine had its algo-
rithms firmly embedded in its architecture, although the operator could select
from a variety of arithmetic operations it offered. Babbage’s Difference Engine

M00_BROO0064_12_SE_C00.indd 4 06/03/14 4:43 PM

	 50.2  The History of Computing

(of which only a demonstration model was constructed) could be modified to
perform a variety of calculations, but his Analytical Engine (never funded for con-
struction) was designed to read instructions in the form of holes in paper cards.
Thus Babbage’s Analytical Engine was programmable. In fact, Augusta Ada Byron
(Ada Lovelace), who published a paper in which she demonstrated how Babbage’s
Analytical Engine could be programmed to perform various computations, is
often identified today as the world’s first programmer.

The idea of communicating an algorithm via holes in paper was not origi-
nated by Babbage. He got the idea from Joseph Jacquard (1752–1834), who, in
1801, had developed a weaving loom in which the steps to be performed dur-
ing the weaving process were determined by patterns of holes in large thick
cards made of wood (or cardboard). In this manner, the algorithm followed by
the loom could be changed easily to produce different woven designs. Another
beneficiary of Jacquard’s idea was Herman Hollerith (1860–1929), who applied
the concept of representing information as holes in paper cards to speed up the
tabulation process in the 1890 U.S. census. (It was this work by Hollerith that
led to the creation of IBM.) Such cards ultimately came to be known as punched
cards and survived as a popular means of communicating with computers well
into the 1970s.

Nineteenth-century technology was unable to produce the complex gear-
driven machines of Pascal, Leibniz, and Babbage cost-effectively. But with the
advances in electronics in the early 1900s, this barrier was overcome. Examples
of this progress include the electromechanical machine of George Stibitz,
completed in 1940 at Bell Laboratories, and the Mark I, completed in 1944 at
Harvard University by Howard Aiken and a group of IBM engineers. These
machines made heavy use of electronically controlled mechanical relays. In
this sense they were obsolete almost as soon as they were built, because other
researchers were applying the technology of vacuum tubes to construct totally

Figure 0.3   Chinese wooden abacus (Pink Badger/Fotolia)

M00_BROO0064_12_SE_C00.indd 5 06/03/14 4:43 PM

	 6 Chapter 0  Introduction

electronic computers. The first of these vacuum tube machines was apparently
the Atanasoff-Berry machine, constructed during the period from 1937 to 1941
at Iowa State College (now Iowa State University) by John Atanasoff and his
assistant, Clifford Berry. Another was a machine called Colossus, built under
the direction of Tommy Flowers in England to decode German messages dur-
ing the latter part of World War II. (Actually, as many as ten of these machines
were apparently built, but military secrecy and issues of national security kept
their existence from becoming part of the “computer family tree.”) Other, more
flexible machines, such as the ENIAC (electronic numerical integrator and calcu
lator) developed by John Mauchly and J. Presper Eckert at the Moore School of
Electrical Engineering, University of Pennsylvania, soon followed (Figure 0.4).

From that point on, the history of computing machines has been closely
linked to advancing technology, including the invention of transistors (for which
physicists William Shockley, John Bardeen, and Walter Brattain were awarded a
Nobel Prize) and the subsequent development of complete circuits constructed
as single units, called integrated circuits (for which Jack Kilby also won a Nobel
Prize in physics). With these developments, the room-sized machines of the 1940s
were reduced over the decades to the size of single cabinets. At the same time,
the processing power of computing machines began to double every two years (a
trend that has continued to this day). As work on integrated circuitry progressed,
many of the components within a computer became readily available on the open
market as integrated circuits encased in toy-sized blocks of plastic called chips.

A major step toward popularizing computing was the development of desk-
top computers. The origins of these machines can be traced to the computer
hobbyists who built homemade computers from combinations of chips. It was
within this “underground” of hobby activity that Steve Jobs and Stephen Wozniak

Figure 0.4   Three women operating the ENIAC’s (Electronic Numerical Integrator And Computer)
main control panel while the machine was at the Moore School. The machine was later moved to
the U.S. Army’s Ballistics Research Laboratory. (Courtesy U.S. Army.)

M00_BROO0064_12_SE_C00.indd 6 06/03/14 4:43 PM

	 70.2  The History of Computing

built a commercially viable home computer and, in 1976, established Apple Com-
puter, Inc. (now Apple Inc.) to manufacture and market their products. Other
companies that marketed similar products were Commodore, Heathkit, and Radio
Shack. Although these products were popular among computer hobbyists, they
were not widely accepted by the business community, which continued to look
to the well-established IBM and its large mainframe computers for the majority
of its computing needs.

In 1981, IBM introduced its first desktop computer, called the personal
computer, or PC, whose underlying software was developed by a newly formed
company known as Microsoft. The PC was an instant success and legitimized

Babbage’s Difference Engine
The machines designed by Charles Babbage were truly the forerunners of modern
computer design. If technology had been able to produce his machines in an eco­
nomically feasible manner and if the data processing demands of commerce and
government had been on the scale of today’s requirements, Babbage’s ideas could
have led to a computer revolution in the 1800s. As it was, only a demonstration model
of his Difference Engine was constructed in his lifetime. This machine determined
numerical values by computing “successive differences.” We can gain an insight to
this technique by considering the problem of computing the squares of the integers.
We begin with the knowledge that the square of 0 is 0, the square of 1 is 1, the
square of 2 is 4, and the square of 3 is 9. With this, we can determine the square of
4 in the following manner (see the following diagram). We first compute the differ­
ences of the squares we already know: 12 - 02 = 1, 22 - 12 = 3, and 32 - 22 = 5.
Then we compute the differences of these results: 3 - 1 = 2, and 5 - 3 = 2. Note
that these differences are both 2. Assuming that this consistency continues (mathe­
matics can show that it does), we conclude that the difference between the value
(42 - 32) and the value (32 - 22) must also be 2. Hence (42 - 32) must be 2 greater
than (32 - 22), so 42 - 32 = 7 and thus 42 = 32 + 7 = 16. Now that we know the
square of 4, we could continue our procedure to compute the square of 5 based on
the values of 12, 22, 32, and 42. (Although a more in−depth discussion of successive
differences is beyond the scope of our current study, students of calculus may wish to
observe that the preceding example is based on the fact that the derivative of y = x2
is a straight line with a slope of 2.)

0

1

2

3

4

5

0

1

4

9

16

1

3

5

7

2

2

2

2

First
difference

Second
differencex x2

M00_BROO0064_12_SE_C00.indd 7 06/03/14 4:43 PM

	 8 Chapter 0  Introduction

the desktop computer as an established commodity in the minds of the business
community. Today, the term PC is widely used to refer to all those machines
(from various manufacturers) whose design has evolved from IBM’s initial desktop
computer, most of which continue to be marketed with software from Microsoft.
At times, however, the term PC is used interchangeably with the generic terms
desktop or laptop.

As the twentieth century drew to a close, the ability to connect individual
computers in a world-wide system called the Internet was revolutionizing com-
munication. In this context, Tim Berners-Lee (a British scientist) proposed a sys-
tem by which documents stored on computers throughout the Internet could be
linked together producing a maze of linked information called the World Wide
Web (often shortened to “Web”). To make the information on the Web accessible,
software systems, called search engines, were developed to “sift through” the
Web, “categorize” their findings, and then use the results to assist users research-
ing particular topics. Major players in this field are Google, Yahoo, and Microsoft.
These companies continue to expand their Web-related activities, often in direc-
tions that challenge our traditional way of thinking.

At the same time that desktop and laptop computers were being accepted and
used in homes, the miniaturization of computing machines continued. Today,
tiny computers are embedded within a wide variety of electronic appliances and
devices. Automobiles may now contain dozens of small computers running Global
Positioning Systems (GPS), monitoring the function of the engine, and providing

Augusta Ada Byron
Augusta Ada Byron, Countess of Lovelace, has been the subject of much commentary
in the computing community. She lived a somewhat tragic life of less than 37 years
(1815–1852) that was complicated by poor health and the fact that she was a non­
conformist in a society that limited the professional role of women. Although she was
interested in a wide range of science, she concentrated her studies in mathematics.
Her interest in “compute science” began when she became fascinated by the
machines of Charles Babbage at a demonstration of a prototype of his Difference
Engine in 1833. Her contribution to computer science stems from her translation
from French into English of a paper discussing Babbage’s designs for the Analytical
Engine. To this translation, Babbage encouraged her to attach an addendum describ­
ing applications of the engine and containing examples of how the engine could be
programmed to perform various tasks. Babbage’s enthusiasm for Ada Byron’s work
was apparently motivated by his hope that its publication would lead to financial
backing for the construction of his Analytical Engine. (As the daughter of Lord Byron,
Ada Byron held celebrity status with potentially significant financial connections.)
This backing never materialized, but Ada Byron’s addendum has survived and is
considered to contain the first examples of computer programs. The degree to which
Babbage influenced Ada Byron’s work is debated by historians. Some argue that
Babbage made major contributions, whereas others contend that he was more of an
obstacle than an aid. Nonetheless, Augusta Ada Byron is recognized today as the
world’s first programmer, a status that was certified by the U.S. Department of Defense
when it named a prominent programming language (Ada) in her honor.

M00_BROO0064_12_SE_C00.indd 8 06/03/14 4:43 PM

	 90.3  An Outline of Our Study

voice command services for controlling the car’s audio and phone communica-
tion systems.

Perhaps the most revolutionary application of computer miniaturization is
found in the expanding capabilities of smartphones, hand-held general-purpose
computers on which telephony is only one of many applications. More power-
ful than the supercomputers of prior decades, these pocket-sized devices are
equipped with a rich array of sensors and interfaces including cameras, micro-
phones, compasses, touch screens, accelerometers (to detect the phone’s orienta-
tion and motion), and a number of wireless technologies to communicate with
other smartphones and computers. Many argue that the smartphone is having a
greater effect on global society than the PC revolution.

0.3  An Outline of Our Study
This text follows a bottom-up approach to the study of computer science, begin-
ning with such hands-on topics as computer hardware and leading to the more
abstract topics such as algorithm complexity and computability. The result is
that our study follows a pattern of building larger and larger abstract tools as our
understanding of the subject expands.

We begin by considering topics dealing with the design and construction of
machines for executing algorithms. In Chapter 1 (Data Storage), we look at how
information is encoded and stored within modern computers, and in Chapter 2
(Data Manipulation), we investigate the basic internal operation of a simple com-
puter. Although part of this study involves technology, the general theme is tech-
nology independent. That is, such topics as digital circuit design, data encoding
and compression systems, and computer architecture are relevant over a wide
range of technology and promise to remain relevant regardless of the direction
of future technology.

Google
Founded in 1998, Google Inc. has become one of the world’s most recognized tech­
nology companies. Its core service, the Google search engine, is used by millions
of people to find documents on the World Wide Web. In addition, Google provides
electronic mail service (called Gmail), an Internet-based video-sharing service (called
YouTube), and a host of other Internet services (including Google Maps, Google
Calendar, Google Earth, Google Books, and Google Translate).

However, in addition to being a prime example of the entrepreneurial spirit,
Google also provides examples of how expanding technology is challenging society.
For example, Google’s search engine has led to questions regarding the extent to which
an international company should comply with the wishes of individual governments;
YouTube has raised questions regarding the extent to which a company should be
liable for information that others distribute through its services as well as the degree
to which the company can claim ownership of that information; Google Books has
generated concerns regarding the scope and limitations of intellectual property rights;
and Google Maps has been accused of violating privacy rights.

M00_BROO0064_12_SE_C00.indd 9 06/03/14 4:43 PM

